Limbic Encephalitis

Post prepared by Precious Ramirez-Arao, Monmouth Medical Center PGY3

A 60 year-old female was found lethargic lying in a pool of feces by roommate.

EMS was called and was immediately brought to the hospital.

In the emergency department she had a witnessed generalized tonic-clonic seizure.

Her roommate relates she had episodes of confusion and short-term memory loss over the past few weeks.

She remained lethargic over the next 72 hours in the hospital.

48-hour EEG monitoring showed diffuse 2 to 3 Hz delta slowing with periodic lateralized epileptiform discharges emanating from the left frontal temporal region.

PLEDS

T2 weighted image of the brain showed signal abnormality of the left mesial temporal lobe and the pulvinar with diffusion restriction in the left hippocampus consistent with limbic encephalitis.

3568150_pone.0055758.g002

Limbic encephalitis (LE) is a subacute syndrome of seizures, personality change and cognitive dysfunction, typically evolving over days to weeks.

Autoimmune and paraneoplastic forms have been described. The most common neoplasms associated with paraneoplastic LE are lung cancer (usually small cell), thymoma, ovarian or testicular teratoma, breast cancer and Hodgkin lymphoma. The associated autoantibody depends on the tumor type. Lung cancer and thymomas are associated with anti-VGKC while ovarian or testicular teratomas are associated with antiNMDA antibodies.

Neurologic symptoms can precede oncologic diagnosis for several months to years and initial CT scans are typically unrevealing.

Nevertheless, prompt and thorough evaluation for malignancy including PET and CT scan of the chest, abdomen and pelvis should be initiated. Symptomatic treatment includes corticosteroids, plasmapharesis and intravenous immune globulin.

 

Cardiac and Concussion Screening at Monmouth March 15, 2014

MJM Flyer Spring Screening

Click here to find out more about concussion.

Click here to find out more about concussion screening.

Click here to find out more about the Matthew J Morahan Program at Barnabas Health.

Lytico-Bodig Syndrome, You Might Get it From Eating Bats

Posted by Daniel Rubio, Drexel University College of Medicine Class of 2014

“A man” obsessing over “bats”…

“A man” eating “bats”…


The patients above are displaying symptoms resulting from a disease known as Lytico-Bodig Syndrome (LBS), a neurologic disease resembling amyotrophic lateral sclerosis (ALS/Lou Gehrig’s Disease), Parkinson’s disease, and Alzheimer’s disease.  The country with the greatest number affected is the US territory of Guam.  In fact, between the 1940-1960 it was the leading cause of death among the Chamorro people, a tribe found on the island of Guam.  The afflicted were usually between the ages of 25-40 years of age.

What’s up with the bats?

Although yet to be proven, it is believed that the high incidence of LBS is due to the consumption of fruit bat, a cultural delicacy on the island.  These fruit bats feed on specific fruits containing high concentrations of an altered amino acid called beta-N-methylamino-L-alanine (BMAA). BMAA is a known neurotoxin and is believed to be the cause of LBS.  BMAA is a protein building block that is incorporated into neuronal proteins to produce an abnormal form that creates clumps with neurons resulting in their dysfunction and death.

I don’t eat bat though?

I addition to the high concentrations found in the fruit bats on the island of Guam, multiple sources have been proposed leading to BMAA exposure within the United States.  Certain bacteria in fresh and salt waters produce BMAA; and, fish and crustaceans will concentrate BMAA within their tissues when they consume the bacteria as part of their normal diet.  It is believed that human consumption of fish and crustaceans in at-risk areas might increase the incidence of neurodegenerative diseases, like Alzheimer’s, Parkinson’s, and Lou Gehrig’s.  This association has been seen in many areas within the United States, especially around the gulf regions and around large bodies of water.  Click here for more details about this.

Am I more lytico or bodig?

Presenting symptoms exist along the continuum of lytico-bodig.  Patients on the lytico spectrum present more like ALS/Lou Gehrig’s disease.  These patients have muscle wasting/atrophy and accompanying weakness, paralysis of mouth and tongue, and an inability to swallow resulting in choking to death.  Over time, paralysis involves the breathing muscles requiring mechanical ventilation to help the patient breath and to prevent choking on secretions.  Lytico patients remain aware of their deterioration.  The form of LBS is fatal in all cases.

On the other end of the spectrum, patients with bodig presentations look more like Parkinson’s disease and Alzheimer’s disease patients.  Bodig patients present with “freezing” with progressive immobility with loss of starting purposeful movement and loss of spontaneous movement.  Progressive dementia with loss of speech and irrational behavior, including violence and rapid fluctuations in mood, are common.  Over time, patients are left in stiff and immobile postures with inability to speak and swallow.

How would I know if I had LBS?

Currently Lytico-Bodig syndrome is diagnosed based upon appropriate history and physical exam by a neurologist.  Definite LBS is declared in post-mortem autopsy.  However, there is research being done to develop rapid tests using cerebral spinal fluid analysis.

What can I do if I have LBS?

Treatment is mainly supportive as is based upon symptoms present, whether it’s Parkinson’s, Alzheimer’s, ALS, or a combination of the three spectrums of diseases.   The more the symptoms resemble Lytico, the greater the mortality: in patients with predominantly lytico-type symptoms the disease is practically 100% fatal.

Concussion’s Axis of Evil

The term concussion is derived from the Latin word “concutere” which means “to shake violently”:

This term is used to describe a head injury associated with a temporary loss of brain function, including impaired consciousness, cognitive dysfunction and/or emotional problems.

concussion1

concussion2

xx

Concussion Center

To fully understand Concussion’s Axis of Evil, one need look no further than the brutal world of professional boxing and it’s neurological complications.

xx

xx

xx

One of the most savage beatings any fighter every received occurred on July 4, 1919 in Toledo, Ohio, when 24 year old Jack Dempsey destroyed 37 year old Jess Willard to become the Heavyweight Champion of the World.

One can easily spot the effects of concussion in Willard as he sustains blow after blow to the head, and he develops unsteady gait, erratic behavior (failing to avoid punches and protect himself) and ultimately unconsciousness.

New Jersey’s own Harrison S. Martland MD (1883-1954) was the first to report in 1928 that repeated beatings of this kind could lead to a delayed permanent neurologic syndrome referred to as punch drunk syndrome.

xx
His observations went largely unheeded.

xx
Muhammad Ali (born as Cassius Marcellus Clay in 1942) was only 22 when he became word heavyweight champion in 1964, almost 40 years after Martland’s paper was published.

Here is with Liberace in 1964:

Almost 10 years after that performance, Prof Corsellis reported further clinical and pathological features of punch drunk syndrome in his 1973 paper “The Aftermath of Boxing”.
Here’s data from one of his cases:

concussion3
concussion4concussion5

By the 1980s, reports of abnormal brain CT scans in professional boxers had reached the popular media (Sports Illustrated, 1983):

concussion7

xx

By 1983, Muhammad Ali was retired from professional boxing,

concussion8
and soon to be diagnosed with “Parkinson’s disease”.

xx
Here he is on the Today show with Bryant Gumbel in 1991:

Here he is in 2009:

xx
Obviously, repeated head trauma, and it’s consequences, is not unique to boxing:

concussion9John Grimsley (1962-2008) was a linebacker for the Houston Oilers.  He retired in 1993.  In 2008, aged 45, he was killed by an accidental gun shout wound to the chest.

His brain was examined as part of an ongoing study by Boston University’s Study of Traumatic Encephalopathy.

xx

xx

xx

xx

xx

concussion10His brain showed the same pathologic changes as the Punch Drunk boxers.

xx

xx

xx

xx

xx

xx

This syndrome, more commonly referred to as Chronic Traumatic Encephalopathy, is now known to have occurred as a consequence of repeated head trauma in many other sports, including soccer, hockey, horse-racing and wrestling.

College football and amateur soccer players have been shown to have impaired performance on neuropsychologic testing, worse with increasing number of concussions.

Then, there’s the Second Impact Syndrome (SIS).

SIS is said to be a rare, often fatal, traumatic brain injury that occurs when a repeat injury is sustained before symptoms of a previous head injury have resolved.
Although limited to single case reports, and disputed as a discrete syndrome in the scientific literature, SIS cases are young athletes and have become high profile in the media:
concussion12
Click here to find out more about this case.

It has become clear that it takes athletes longer to recover from repeated that single concussions:
concussion13

This data, as well as SIS cases, has led to a concern that the presence of ongoing concussive symptoms are a significant risk factor for further injury to occur, and that any residual symptoms should mandate restriction for further contact sport in young athletes.

xx
concussion19

xx
Finally, it is know that concussions are under-reported by high school players.

A 2004 survey of 1500 varsity football payers in Milwaukee disclosed that although 15% had sustained a concussion during the season only 50% reported it to their coach or trainer.

So there we have it, Concussion’s Axis of Evil:

concussion20

xx

And the solution?

The Allies Against Concussion:

concussion21

Click here to read more about how we have put these measures into effect at Monmouth Neuroscience Institute.

Click here to find out more about the Matthew J. Morahan III Health Assessment Center for athletes at Barnabas Heath.

Playing video games improves aging brain function

brainage1_f

We know from previous blogs that there is an escalating incidence of dementia.

We know that the strongest risk factor for developing dementia is old age.

However, we also know that dementia is not an inevitable consequence of old age.

Why do some older adults get dementia and others don’t?

Instead of looking for dementia risk factors, some researchers have turned the tables on this question, and looking at things that might be protective, reduce the likelihood of age related dementia.

This could translate into activities or behaviors  anyone could use to lower their dementia risk.

For example, regular exercise and social stimulation have been shown to lower dementia risk.

New research published in Nature looks at the relationship between brain function and video games performance in aging adults.

The investigators designed a game called NeuroRacer in which the player drives a virtual car along a track and must respond to the appearance of specific road signs by pressing a button. The trick is that the player has to attend to one type of sign only, ignore the others, and continue “driving” all the while.  Then, as the participants learned the game and improved their scores, the game gets harder and harder.

neuroracer

The study had 46 participants, aged 60-85, engage in 12 hours of the training over the course of a month. During that time, they vastly improved their performance, and at the end of that study they played just as well as 20-year olds.  Furthermore, these gains in brain function persisted for more than 6-months, and more importantly weren’t limited to gaming – study participants also showed improved attention and working memory.

Click here to find out more.

New cure for dementia?

Probably not.

However, this study does demonstrate that older adults can still re-shape their brain connections, and also re-affirms that the old adage, if you don’t use it you lose it, also includes brain function!
mitch-april-2013

Maybe it’s time to start playing chess or BrainAge regularly?