Seizures from Art Exhibit, Latest Example of Photosensitive Epilepsy

gallery-zee_420

Outside Gallery ZEE in Pittsburgh

A Pittsburgh art exhibit that closed this week after three people were treated for reported seizures.

Shaunda Miles, spokeswoman for the Pittsburgh Cultural Trust, said the exhibit titled “Zee” by Austrian artist Kurt Hentschlager is closed indefinitely.

ZEE-7-OSKH-300dpi

The installation, part of the Cultural Trust’s Pittsburgh International Festival of Firsts, was scheduled to run through Oct. 27.

It includes heavy fog and intense strobe effects, and attendees must sign a waiver before entering.

Click here to find out more about this story.

Photosensitive Epilepsy


Epileptic seizure types can be  induced in certain susceptible patents by photic (or visual) stimuli,  usually flashing lights or rapidly changing/alternating images . Some famous examples have included:

Pokeman

An animated segment of a film promoting the 2012 London Olympics:

Flickering fluorescent lighting:

Video Games:

Strobe lights in clubs:

Photosensitive seizure only occur in a small proportion of patients with generalized epilepsy, and those patients will usually know they are susceptible based on their routine diagnostic EEG, which will usually include intermittent photic stimulation as part of routine testing.
Click here to find out more about seizures and epilepsy

Advertisements

Blackout – was it a fit or a faint?

People generally experience a blackout (temporary loss of consciousness) from one of two common problems: (1) Insufficient blood flow to the brain (syncope)  or (2) Abnormal electrical activity within the brain (seizure).

xx

Syncope (or a faint) is caused by insufficient blood flow to the brain because of low blood pressure.  There may be a prodrome of dizziness loss of vision and hearing weakness, flushing, nausea (sometimes referred to pre-syncope).  Then there will be overt loss of consciousness that leads to the faint.  The affected patient will typically fall by dropping forwards from loss of muscle tone. The affected patient might look pale and clammy, and will usually come around quickly of they are allowed to lay down on floor allowing blood flow to return to the brain.  Syncope can be caused by dehydration, irregular heart beat, or emotion (vasovagal or “neurocardiogenic” syncope).

http://www.youtube.com/watch?v=rrjQW7UIvMU&start=35&rel=0

xx

A seizure (or a “fit”) is caused by abnormal electrical activity in the brain, usually accompanied by a clinical event that can vary from a brief loss of awareness (an absence seizure or “petit mal”) to loss of awareness with thrashing limb movements (a tonic-clonic or grand mal seizure).  A generalized tonic-clonic seizure will usually be associated with increased muscle tone, so the patient will stiffen up and fall backwards not forward and may bite their tongue.  The eyes will be open, and their may be loss of bladder and bowel control.  There may be flailing limb movements that lead to injury.  After the seizure stops, the patient will usually be confused or dazed, and not come around immediately like the syncope patient.

http://www.youtube.com/watch?v=wHTPfPcOHyo&start=285&rel=0

xx

Here is a table that emphasizes the differences between fits (seizures) and faints (syncope):

sz2

xx

If you have experienced a blackout, what should you do? A simple faint in an otherwise young healthy person may not need emergent medical care.  However, syncope in an older person with a cardiac history, or syncope associated with chest pain and breathlessness could indicate a heart problem and usually justify an emergency room visit.  Similarly a new onset seizure in somebody not previously know to have epilepsy should justify an emergency room visit.

Epilepsy surgery and functional MRI

fmri

BrainMRI3planes

Epilepsy surgery is an option for patients with intractable partial onset seizures that are not controlled by oral medications.  Epilepsy monitoring is used to localize the seizure focus, often a lesion or abnormal area of brain located in the temporal lobe.  That part of the brain is then carefully removed to prevent future seizures:

seizure surgery2

A patient with a brain abnormality in the R temporal lobe (top) undergoes brain surgery to remove that area of brain and prevent future seizures.

Epilepsy surgery is very effective and yet still underutilized for treating seizures.

Left temporal lobe resections are more risky that right-sided cases, because the left hemisphere controls language functions in most (even left handed) patients.  Surgeons have to be very careful planning seizure surgery on the left side to be sure that they do not damage brain critical for speech and language and leave the patient with aphasia.

That’s where functional magnetic resonance imaging (fMRI) comes in.  fMRI goes beyond the conventional imaging of brain structure, and can actually localize regional brain functions by detecting changes in regional blood flow in response actual or imagined activity.

fMRI is increasingly being used to evaluate candidates for epilepsy surgery by identifying important functional regions within the brain, including unpredictable patterns of functional reorganization, to prevent unexpected post-operative deficits.  Click here for a link to a paper with illustrative cases.

Monmouth’s New Onset Seizure Center Opens in June!

https://i1.wp.com/www.mnepilepsyhudson.org/wp-content/uploads/2011/07/iStock_000017472498Small.jpg

New onset seizures can be isolated events or the harbinger of future epilepsy.

Decisions about starting medications and restricting driving are complicated, and are best made by neurology sub-specialists (“epileptologists“) after a detailed evaluation that usually includes an electroencephalogram (EEG) and brain magnetic imaging study (MRI).

Monmouth Neuroscience Institute is pleased to announce the opening of the region’s first New Onset Seizure Center in June 2013.

Patients who come to the emergency room with their first seizure can be stabilized and then sent home with instructions to follow-up in New Onset Seizure Center, an integral part our Certified Epilepsy Center within one week.

All patients coming to the center they will undergo an EEG, MRI of the brain and a visit with one of our board certified fellowship-trained epilepsy experts during a single visit.

This avoids hospitalization and hasty decisions about medical management.

Click here to find out more about the center.

Monmouth Epilepsy Program Receives NAEC Certification

Monmouth Medical Center’s Epilepsy Program was awarded prestigious level 3 certification today by the National Association of Epilepsy Centers!

Monmouth certificateThe National Association of Epilepsy Centers (NAEC) is a non-profit  association with the primary objective of connecting people with epilepsy to specialized epilepsy care and epilepsy centers.

Founded in 1987 by physician leaders committed to setting a national agenda for quality epilepsy care, the NAEC educates public and private policymakers and regulators about appropriate patient care standards, reimbursement and medical services policies.

NAEC works in conjunction with existing scientific and charitable epilepsy organizations.

A third-level center must provide all the medical, neuropsychological, and psychosocial services needed to treat patients with refractory epilepsy to achieve certification.

Click here to find out more about Monmouth’s Epilepsy Program.

Click here to find out more about seizures and epilepsy.

Epilepsy and Seizures, What’s the difference?

seziure

What is a Seizure?

A seizure (or “fit”) is physical finding or change in behavior that occurs because of abnormal electrical activity in the brain.

When people think of a seizure, they usually imagine a generalized (or “Grand Mal”) tonic clonic seizure:

It is estimated that as many as 5% of all Americans will experience an epileptic seizure during their lifetime.
xx

xx

What is epilepsy?

Epilepsy results from a permanent change in brain tissue causing it to be too excitable, leading to repeated unpredictable seizures over time.

This can occur from a brain injury, such as head trauma, birth asphyxia or a stroke, brain tumor or can be genetic (something you were born with).

The prevalence of epilepsy is estimated to be 1-2% in the USA.

xx

Not all seizures lead to epilepsy.

Why is the prevalence of epilepsy so much lower than the incidence of seizures?

The answer is that not all seizures will lead to epilepsy.

A seizure can be provoked by some extraneous factor such as high fever, medication, drugs and alcohol, or blood electrolyte disorder, which if addressed properly will not lead to further seizures.

However, a single seizure can also be the beginning of epilepsy, necessitating an anti-epileptic medication (or anticonvulsant) to prevent further episodes.

xx

So, how do you tell if a first seizure is the beginnings of epilepsy?

All patients presenting with their first seizure should have a thorough evaluation, including a detailed history (from someone who observed the episode), physical examination, blood work, brain imaging study and electroencephalogram.

A seizure which begins with a focal onset, such as a warning (“aura”), unusual behavior (“automatism”), or focal movements just as turning the head to one side or jerking on one side of the body suggests the beginnings of epilepsy from an underlying brain injury or lesion.

xx

Seizure with automatism (Partial Complex Seizure):

Note that the patient appears awake, but is not responding normally, and has lip smacking and pointing (the automatisms), indicating a focal (temporal lobe) seizure onset.  He seems confused and disoriented afterwards.

xx

Seizure with focal motor activity:

Although the patient is unresponsive and jerking, note that the head is turned to the right and there are only right sided limb movements, indicating that the seizure is coming from the left side of the brain.

xx

Some genetic seizure syndromes, like juvenile myoclonic epilepsy or absence epilepsy (“petit mal”) begin in childhood or adolescence, are associated with characteristic EEG findings, and indicate epilepsy which will be recurrent without treatment.

Absence seizure:

The child is talking, then suddenly stops and stares off into space, then suddenly resumes speech as if nothing happens. This is a typical absence seizure or “Petit Mal” from epilepsy and will recur without treatment.

xx

There are physical signs which suggest an underlying neurocutaneous syndrome, and epilepsy:

Syndrome characterized by a facial port-wine stain, seizures, paralysis or weakness on one side, learning disabilities, and "calcifications" in the brain

Syndrome characterized by a facial port-wine stain, seizures, paralysis or weakness on one side, learning disabilities, and “calcification” in the brain

Genetically determined syndrome of epilepsy associated with     Areas of the skin that are white (due to decreased pigment) and have either an ash leaf or confetti appearance    Red patches on the face containing many blood vessels (adenoma sebaceum)    Raised patches of skin with an orange-peel texture (shagreen spots), often on the back

Genetically determined syndrome of epilepsy associated with: Red patches on the face containing many blood vessels (adenoma sebaceum) . Areas of the skin that are white (due to decreased pigment) and have either an ash leaf or confetti appearance . Raised patches of skin with an orange-peel texture (shagreen spots), often on the back . Small tumor like lesions at the nail folds (subunguual fibromas) .

NFM

Genetically determined epilepsy syndrome associated with fatty tumors, pigmented patches (including in the arm pits), and Lisch nodules in the iris.

xx

The presence of an abnormal EEG in a patient presenting with a single seizure increases the chances of another seizure (epilepsy) and may warrant initiation of an anticonvulsant medication. This could be either a focal spike suggesting a partial onset seizure focus:
EEG spike
Or a burst of generalized spike wave activity, suggesting a genetic generalized epilepsy:
EEG JME

xx

A patient with seizures and an abnormal brain imaging study is also more likely to suffer a recurrence and develop epilepsy:
Abnormal Brain MRIs in Epilepsy

However, if all the tests are normal, it can be hard to tell if a single unprovoked seizure is the beginning of epilepsy or not, only about 20-30% of these patients will have a recurrent event, so sometimes it is better to wait and see what is going to happen rather than rushing into starting an anticonvulsant medication here.

xx

Where to get more help.

These are complicated issues and decisions which should only be made after consultation with a neurologist, preferably a neurologist with subspeciality training or certification in epilepsy at an epilepsy center.