A New Spin on The “Founder” of Neurology

Jean-Martin Charcot (1825-1893) is regarded by most scholars to be the founder of modern neurology.

charcotdemonstratinghistechnique

Known to be an excellent clinical teacjer, he was a professor at the University of Paris for 33 years and was  associated with Paris’s Salpêtrière Hospital that lasted throughout his life, ultimately becomiwas known as an excellent medical teacher, and he attracted students from all over Europe. His focus turned to neurology, and he is called by some the founder of modern neurology.

Charcot took an interest in hysteria, a mental disorder with physical manifestations, which he believed to be the result of an inherited weak neurological system, set off by a traumatic event like an accident

He learned the technique of hypnosis to evaluate these patients, and very quickly became a master of the relatively new “science.”

He believed that a hypnotized state was very similar to a bout of hysteria, and so he hypnotized his patients in order to induce and study their symptoms.

Charcot’s work also included other aspects of neurology – he was first to describe the degeneration of ligaments and joint surfaces due to lack of use or control, now called Charcot’s joint. He discovered the importance of small arteries in cerebral hemorrhage.  He described hereditary motor and sensory neuropathy.

He died in 1893 in Morvan, France.

The new movie focuses on his relationship with one hysterical patient named Agustine,

Click here to find out more about this.

Advertisements

Ticked off at Neuro Lyme Disease

Human tick

Post Prepared by Dr. Mohammed Nasir Yousuf Shah,

PGY-3 Internal Medicine, Monmouth Medical Center

xx

Case Report

A 36 year old otherwise healthy male noticed a facial droop when he woke up one morning and looked in the mirror. There was associated pain at the angle of the right jaw like a “toothache” and also numbness to along right side of tongue.

He had been experiencing occipital headache with neck pain for the previous 3 days.  The headache was throbbing in character, worse when laying his head back on a pillow. He denied any other neurological symptoms.

Further questioning revealed that 2 months ago he suffered 2 tick bites on his thigh; but did not experience any fever, chills or rash at that time.

Physical examination showed prominent facial droop in the lower half of the right side of the face with inability to puff the cheek on the right and some mild weakness in the upper half of the right side of the face with reduced wrinkling of the forehead. He also had impaired taste sensation along the right side of the tongue. The rest of the neurological exam was normal.

face

His brain imaging study was normal, but CSF analysis revealed low glucose and elevated protein and pleocytosis with increased lymphocytes indicating a diagnosis of aseptic meningitis.

Given the history of tick bite 2 months prior and the characteristic 7th cranial nerve palsy, a presumptive diagnosis of neurological Lyme disease was made and the patient was started on intravenous ceftriaxone.

Meanwhile Lyme serologies and antibodies to B. Burgdorferi in CSF were tested and the patient was discharged on IV ceftriaxone.

The results of the serological and CSF testing returned positive for Lyme disease a few days later.

Discussion

Background:

tick

Borrelia burgdorferi is the organism responsible for Lyme disease which affects several organ systems and is transmitted by the bite of infected ticks belonging to the genus Ixodes.

Skin, the site of inoculation, is involved in 80 percent or more of infected individuals followed by joint involvement.

The third most common site is the nervous system, which is involved in 10 to 15 percent.

Clinical manifestations:

Nervous system involvement begins during early disseminated Lyme disease, when spread of the spirochetes can result in meningeal seeding. Acute neurologic involvement usually occurs weeks to several months after the tick bite and may be the first manifestation of Lyme disease. In contrast, certain neurologic problems, such as a more indolent, disseminated polyneuropathy, may develop months to a few years after the initial infection.

Lymphocytic meningitis, cranial neuropathy and radiculoneuritis constitute the classic triad of acute, early neurologic Lyme disease.

Clinical findings of nervous system Lyme disease are divided into disorders of the peripheral vs. central nervous system.

Peripheral nervous system

In early disease, two peripheral nerve manifestations are particularly common and form part of the classic triad.

Cranial neuropathies: These tend to occur early in infection and are usually abrupt in onset. Virtually any cranial nerve can be involved, but the seventh (facial) is by far the most common, occurring in 8 percent of cases.

Since facial nerve palsy is uncommon in young children, Lyme disease should be strongly considered as the cause of facial nerve palsy affecting a child who has been in an endemic area. In adults in endemic areas, during spring through fall, a significant percentage of facial nerve palsies are attributable to Lyme disease. Involvement can be bilateral and because bilateral facial nerve palsies are generally uncommon, Lyme disease should be suspected in patients with potential recent exposure.

Radiculoneuritis: This is reported in 3 percent of cases of Lyme disease and is often missed. It can mimic a mechanical radiculopathy (eg, sciatica) with radicular pain in one or several dermatomes, accompanied by corresponding sensory, motor and reflex changes. This disorder should be considered in patients in endemic areas presenting in spring through autumn with severe limb or truncal radicular pain without an apparent mechanical precipitant.

Central nervous system

The most common form of CNS involvement is lymphocytic meningitis. Rarely, inflammation of the brain and/or spinal cord parenchyma (an encephalomyelitis) can occur.

Meningitis: Lymphocytic meningitis, alone or in combination with cranial nerve or spinal nerve root involvement, represents the most common form of central nervous system involvement. Clinically it is indistinguishable from viral meningitis, with headache, fever, other systemic symptoms, photosensitivity, and neck stiffness.

Encephalopathy: Patients may experience fatigue, cognitive slowing, and memory difficulty. However, these symptoms are nonspecific and are frequent concomitants of many inflammatory disorders.

xx

Diagnosis

The diagnosis of nervous system Lyme disease rests on three elements:

  • Since the disease is transmitted exclusively by bites of Ixodes ticks, there must be the possibility of exposure
  • The clinical disorder should include objective evidence of nervous system Lyme disease
  • Laboratory testing (positive two tier Lyme serologies with or without positive CSF Lyme antibodies)

Serologic testing: With the exception of the first 4 to 6 weeks of infection, when the specific immune response may not yet have developed sufficiently to provide a measurable antibody response, serologic testing for antibodies to B. burgdorferi is highly sensitive and specific for the diagnosis of Lyme disease and thus in such cases the absence of detectable antibodies in the serum is strong evidence against the diagnosis.

The two-tier strategy, which is recommended by the US Centers for Disease Control and Prevention, uses a sensitive enzyme-linked immunosorbent assay (ELISA) followed by a Western blot. If the ELISA is positive or equivocal, then the same serum sample should be tested by Western blot. If the ELISA is negative, the sample needs no further testing.

2 tier

CSF analysis: In Lyme meningitis the CSF typically has a modest pleocytosis of up to several hundred lymphocytes and/or monocytes per microL. The CSF protein concentration is usually moderately elevated, and is typically no greater than about 200 to 300 mg/dL (2 to 3 g/L).

CSF antibodies: The sensitivity for testing the CSF for intrathecal production of antibodies to B. burgdorferi is poor and a negative test does not exclude CNS Lyme disease if clinical circumstances support the diagnosis.

Imaging:  Since Lyme encephalomyelitis is so rare, MRI of the brain and spine is only rarely abnormal in Lyme disease. When present, the MRI reveals areas of increased signal on T2 and FLAIR sequences.

Electrophysiologic testing: In patients with a peripheral neuropathy, electrophysiologic assessment (electromyography and nerve conduction studies) can be helpful and typically reveal findings consistent with a patchy axonal polyneuropathy (ie, a mononeuropathy multiplex).

Approach to diagnostic testing

Assessment of the patient with possible nervous system Lyme disease must be tailored to the specific presentation. It can be sufficient to simply administer oral antibiotics to patients with recent exposure, a positive serology and an appropriate clinical syndrome.  However a lumbar puncture may still be necessary if there is a strong clinical suspicion of meningitis, primarily to exclude other, potentially more dangerous pathogens.

CSF studies should include cell count, protein and glucose concentrations, and gram stain and bacterial cultures.

CSF and serum should both be sent for anti-B. burgdorferi antibodies and VDRL should be measured.

Neuroimaging, preferably by MRI, should precede the lumbar puncture if the patient has clinical evidence of parenchymal brain involvement. Depending on the findings on imaging,

xx

Treatment

Lyme meningitis is generally self-limited, even without treatment.

Oral doxycycline is effective for early disseminated Lyme disease with neurologic manifestations, including meningitis. Doxycycline has moderately good penetration into the CSF and has oral bioavailability >98 percent, making oral dosing equivalent to intravenous dosing.

Lyme patients with isolated facial nerve palsy are treated with oral doxycycline (100 mg orally twice daily). Antibiotic therapy does not have a major impact on the outcome of facial palsy. However, treatment is recommended to prevent other complications of disseminated Lyme disease. The majority of patients with Lyme facial palsy recover. The prognosis is worse for patients with bilateral facial palsy compared with unilateral palsy.

Lyme patients with radiculoneuritis, meningitis or other neurologic complications are typically treated using parenteral therapy with ceftriaxone (2 g intravenously once daily) for at least 14 days.

There are no diagnostic tests that can determine clearance of infection or predict the success of therapy. Resolution of neurological symptoms is often delayed and persistence of symptoms is not necessarily indicative of treatment failure.

Treatment recommendations are the same for both the early and late neurologic manifestations of Lyme disease.

 

Post-operative peripheral neuropathy

xx

Post provided by Kevin Turezyn, Drexel University College of Medicine Class of 2013:

xx

While the overall risks of undergoing a procedure involving general anesthesia have decreased dramatically over the last 25 years, there is one phenomenon that still puzzles both anesthesiologists and surgeons: post-operative peripheral neuropathies.

Why a patient undergoing an appendectomy would wake up with weakness in their arm is still in large part a mystery. Luckily most patients recover fully, but a small subset suffer from permanent damage.

While relatively infrequent, peripheral nerve injury after anesthesia is one of the largest sources of professional liability for anesthesiologists. Estimates of its frequency range from .03% to .11% of patients who undergo anesthesia.

Interestingly, despite numerous attempts to decrease its incidence, anesthesiologists have had little success.

While the exact cause is unknown, many believe that it relates to patient positioning. There are several points in the body where nerves run very close to the surface leaving them vulnerable to injury. For example, the most commonly injured nerve is the Ulnar nerve of the arm. When this nerve goes through the elbow, it is very close to the surface where it has little body tissue for protection. People commonly hit this nerve in daily life, giving them a painful sensation called hitting your “funny bone”. Other commonly injured nerves include the radial nerve (compression in the spiral groove against the humerus), brachial plexus from traction on the arm, sciatic nerve in the buttock and peroneal nerve against the fibula head.

The American Society of Anesthesiologists has published guidelines for prevention of perioperative peripheral neuropathies. The guidelines focus on pre-operative assessment for patients who are at higher risk ( diabetics, alcoholics, patients with peripheral vascular disease) as well as proper positioning of the extremities and adequate padding.

Click here for the full guidelines.

positioning

When peripheral nerve injury does occur, it frequently resolves on its own, although this can take take several months. During this time, there is little that can done to speed recovery. Physical therapy is often recommended to prevent muscle contractures and atrophy during this time period.

If a patient feels that they suffered a nerve injury during surgery, it is important that they be evaluated right away by a trained neurologist. Testing such as an electromyogram (EMG) can be done to determine the location of the injury and prognosis for recovery.

cts emg

Feeling sunburnt in winter? It could be small fiber neuropathy.

sunburnt

cc

Nerves are composed of bundles of individual fibers (axons)

nerve2

Nerve fibers (axons) come in a variety of shapes and sizes.  Some are wrapped in insulation (myelinated) others are bare (unmyelinated).

Human nerve

You can see from the figure (above) that small unmyelinated fibers make up the majority of human sensory nerves.  These small unmyelinated fibers convey pain and temperature sensitivity.

cc

Small fiber neuropathy

Some diseases, particularly diabetes, preferentially affect these small unmyelinated fibers, leaving the other fibers relatively unaffected, resulting in small fiber neuropathy.

Symptoms of small fiber neuropathy are usually a mixture of numbness (sensory loss) and neuropathic pain.

The pain can be superficial and burning, deep aching, pins-and-needles, electrical shocks, or knife-like stabbing.  Innocuous contact (such as with clothing or bedclothes) can become painful like a sunburn.

Small fiber symptoms often worsen at night (when there are fewer distractions) and in the cold.

The symptoms usually begin in the feet, often first affecting the toes and/or soles.  As the condition worsens, the symptoms usually spread proximally up on to the legs and ultimately on to the hands, leading to a “glove and stocking” pattern.

Peripheral Neuropathy, Length Dependent

In most neuropathies, the ends of longest nerves are affected first (left), leading to a glove and stocking distribution of pain and numbness (right).

hh

Autonomic dysfunction from small fiber neuropathy can cause burning redness in the feet (“erythromelagia”):

erythromelagia

hh

Also, loss of innervation to the sweat glands can cause decreased sweating peripherally (where the neuropathy is worse), and lead to increased sweating on the head and trunk:

sweat test

Sweat test showing decreased sweating in t extremities (yellow) and increased sweating on the head and trunk (purple).

hh

A Diagnostic Challenge!

It is the large myelinated fibers which sub-serve strength and deep tendon reflexes.  Furthermore, it it these same large myelinated fibers which are tested during a conventional nerve conduction study.

So the physical signs and electrophysiologic findings we typically rely on to diagnose neuropathy may be absent in small fiber neuropathy.

The most widely available diagnostic test is the punch skin biopsy to quantify epidermal innervation.

skin biopsy neuropathy

Skin biopsies, showing normal epidermal innervation (left) and epidermal denervation in small fiber neuropathy (right).

cc

Managing Small Fiber Neuropathy

So, you know you have sunburn from small fiber neuropathy, now what?

The most important first step is to look for an underlying (treatable) cause, particularly occult diabetes, with blood work that includes a glucose tolerance test.  In the case of diabetes, monitoring and controlling the blood glucose, is the most important next step.

Otherwise, treatment is usually limited to symptomatic measures, using drugs like gabapentin, pregabalin and/or duloxetine.

2012-13 Neurology Student Research Presented at Drexel University College of Medicine

Monmouth neurology students presenting their posters during medical student research day at Drexel University College of Medicine in Philadelphia on March 20, 2013:

medical-student-research-day-2

1: Addressing blood glucose control in diabetic peripheral neuropathy:  A missed opportunity for neurologists?

Darsi Pitchon and Seun Ku Kim

IMG_20130320_143958 IMG_20130320_152931

xxx

xxx

pichon1

Key points:

Most neurology visits for diabetic neuropathy did not include counseling about blood glucose levels, unless they were with a neuromuscular fellowship trained sub specialist.   Because neuropathy can be the presenting and/or predominant problem in diabetes, some of these patients may be primarily followed by their neurologist, so this is a missed treatment opportunity.

xx

xx

2.  Acute myelopathy with normal CSF and imaging:

Denis Chang

IMG_20130320_144226chang2

Chang

xx

Key Points:

Spinal cord infarction from fibrocartilaginous embolism can present with acute quadriparesis in young patients with normal CSF and MRI scans.  If this diagnosis is suspected, a follow-up MRI 2-3 days can be quite helpful.  This is not an inflammatory process, and will not improve with steroids or other immunosupressive medications, which can hurt more than they help.

xx

xx

3. The benefits of an on-line neurology clinical course for 4th year clerkship students

Ilya Grinberg

IMG_20130320_144208

ginsberg2

Key points:

The on-line video course used by the Monmouth neurology clerkship led to improved test scores on an on-line clinical test compared to students who did their clerkship at other sites.  The on-line clinical test is a low cost but effective method of evaluating students’ clinical skills in neurology over multiple clerkship sites.

Painful feet? – It might be plantar fasciitis.

plantar fasciitis

The plantar fascia is a thick fibrous band of connective tissue originating on the bottom surface of the heel and along the sole of the foot.

Plantar fasciitis is a term used to denote painful inflammation of this plantar fascia, usually from the repeated trauma that can result from unusual prolonged standing or exercise.

Plantar fasciitis causes pain in the heal and sole of the foot, worse when you take your first steps after getting out of bed or sitting for a long time.

plantar fasciiits2

Typically, the pain and stiffness will improve after you take a few steps, but it may come back after sitting, or after climbing stairs or standing for a long time.

Although you feel the pain in you sole and heel, a common cause is tightness and spasm in the calf (gastrocnemius) muscles, which pulls on the Achilles tendon,  (green arrow below), flattens the foot, and puts additional strain on the plantar fascia (red arrow below):

plantar fasciiits3

Other causes can include:

Being overweight, which increases the load on the plantar fascia and your foot as a whole.

Unaccustomed or excessive physical activities, such as running, walking long distances, jumping, tennis, basketball, and aerobics.

Having flat feet or high arches, which can pit additional stress on the plantar fascia.

Standing or walking on hard floors for a long time.

Flat shoes, that do not support your arch leave the plantar fascia unprotected.

xx

Many patients referred to my practice with painful feet and suspected neuropathy actually turn out to have plantar fasciitis.

xx

Conservative treatments:

Rest your foot for 2 to 6 weeks. Stand, walk, or run less.

While your foot is resting, try exercise that does not stretch your arch, like swimming or cycling.

Pick shoes with good arch support to protect your plantar fascia and allow it to heal.

Stretch your calf muscles and Achilles tendon.

Wear splints to stretch the calf and foot at night.

xx

Medical Treatments:

If the home treatment methods do not completely resolve your symptoms, you might want to see a podiatrist or orthopedist for a cortisone injection to reduce inflammation or a custom orthotic insert.

xx

Surgery:

Nonsurgical treatments are effective for most people. However, if your symptoms are severe and other treatments have not worked for at least 6 to 9 months, plantar fascia release surgery may be an option.

Sciatic Neuropathy

The terms lumbar radiculopathy and sciatica are used interchangeably to indicate radiating pain, numbness and weakness in a leg from a pinched nerve root in the back.

However, it is important to recognize that similar symptoms and signs can be caused by injury or compression of the sciatic nerve outside the spine, either in the buttock or thigh.

The sciatic nerve is the longest and widest nerve in the body, extending from the spine all the way to the foot, and contributes most of the nerve supply to the leg:
Sciatic-Nerve-Anatomy

Sciatic nerve injury presents with:

1. Numbness affecting the entire leg, aside from the front of the thigh.

2. Weakness of the hamstrings, and all movement at the ankle.

3. Absent ankle jerk.

http://www.youtube.com/watch?v=z2YrjAGChBw&feature=youtu.be&rel=0

Sciatic Nerve Injury in the Buttock:

The nerve can be injured by misplaced buttock injections, gunshot wounds and knife injury. Buttock injections should be given in the upper outer quadrant to avoid the sciatic nerve

Buttock injections should be given in the upper outer quadrant to avoid the sciatic nerve

The sciatic nerve injury can also be injured by prolonged sitting on a toilet seat, either from direct nerve compression or hemorrhage and compartment syndrome into the gluteal muscles.  This has been reported in cases of  severe prolonged diarrhea, or drug induced coma on the toilet, so called toilet seat neuropathy.

toilet

Sciatic Nerve Injury at the Hip:

The sciatic nerve runs behind the hip joint as it travels through the buttock.
The sciatic nerve is frequently injured by a posterior dislocation of the hip:
9588.jpg

Sciatic nerve injury occurs in as many as 1%–3% of patients who undergo total hip replacement surgery, usually from a stretch injury to the nerves, but occasionally from a misplaced crew, broken piece of wire, fragment of bone or cement pressing on the nerve:

Sciatic nerve injury after hip arthroplasty. (a) The skin incision for the transgluteal approach is in a continuous line. The cross on the left shows the ischium and the one on the right shows the trochanter. Between them, the skin projection of the sciatic nerve is seen. (b) The sciatic nerve was freed from all attachments. The arrows identify acrylic material from the hip arthroplasty, which was damaging the nerve

Sciatic nerve injury after hip arthroplasty. (a) The skin incision for the transgluteal approach is in a continuous line. The cross on the left shows the ischium and the one on the right shows the trochanter. Between them, the skin projection of the sciatic nerve is seen. (b) The sciatic nerve was freed from all attachments. The arrows identify acrylic material from the hip arthroplasty, which was damaging the nerve

Piriformis Syndrome:

However, symptoms of sciatic neuropathy most often result from nerve compression by the piriformis muscle at the level of the sciatic notch, so-called piriformis syndrome.

piriformis

This presents with buttock tenderness and pain, radiate down the posterior thigh.  Symptoms are made worse by prolonged sitting, bending at the waist, and activities involving hip adduction and internal rotation.  The pain can be reproduced by deep palpation over the sciatic notch.

Diagnostic modalities such as CT, MRI, ultrasound, and EMG may all be normal in piriformis syndrome, but are still useful for excluding other conditions.

Magnetic resonance neurography is a specialized imaging technique which can confirm the presence of sciatic nerve irritation or injury of the sciatic nerve in the piriformis muscle.

Magnetic resonance neurography findings in piriformis syndrome. A: Axial T1-weighted image of piriformis muscle size asymmetry (arrows indicate piriformis muscles). The left muscle is enlarged. B and C: Coronal and axial images of the pelvis (arrows indicate sciatic nerves). The left nerve exhibited hyperintensity. D: Curved reformatted neurography image demonstrating left sciatic nerve hyperintensity and loss of fascicular detail at the sciatic notch (arrows). Filler AG, Haynes J, Jordan SE, et al, "Sciatica of nondisc origin and piriformis syndrome: Diagnosis by magnetic resonance neurography and interventional magnetic resonance imaging with outcome study of resulting treatment," J Neurosurg Spine 2: 99-

MRN findings in piriformis syndrome. A: Axial T1-weighted image of piriformis muscle size asymmetry (arrows indicate piriformis muscles). The left muscle is enlarged. B and C: Coronal and axial images of the pelvis (arrows indicate sciatic nerves). The left nerve exhibited hyperintensity. D: Curved reformatted neurography image demonstrating left sciatic nerve hyperintensity and loss of fascicular detail at the sciatic notch (arrows).

Conservative treatment can include medications, physical therapy and stretching, or injection of a paralysing agent such as botulinum toxin into the piriformis muscle under ultrasound or CT control. Surgery may be necessary for recalcitrant cases.